Qualitative Characterization of the Purity of Milled Durum Wheat Products
by Multidimensional Statistical Analysis
of Their Mid-Infrared Diffuse Reflectance Spectra
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ABSTRACT

Because assessment of durum wheat semolina purity by the standard ash
test has been widely criticized, we attempted to characterize products of a
semolina mill by mid-infrared diffuse reflectance spectroscopy, which up to
now has met with limited success. Recent technological advances may open
new possibilities for this spectral range; new mathematical treatments are
reported that extract the main spectral phenomena in a set of spectra. A
collection of milled wheat products ranging from very pure semolinas to
brans was chosen for this study. Three mathematical treatments
(multidimensional statistical analyses) were applied to the spectra to
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condense the data with minimal loss of information: principal component
analysis, morphological analysis, and correspondence factorial analysis.
By these methods, characteristic wave numbers of the main components of
wheat were identified for starch (1,166, 1,102, and 1,066 cm'l), cellulose
(1,134and 1,178 cm’), noncellulosic cell-wall components (1,730 and 1,594
cm™"),and gluten (1,694 and 1,554 cm™'). Maps showing a separation of the
three kinds of milled products (semolinas, flours, and brans) and a rough
classification of these products according to purity were obtained without
biochemical calibration.

One of the main specifications for milled products of durum
wheat, and particularly of semolinas, is what practitioners call
“purity” (Irvine 1971). This criterion characterizes the degree of
contamination of starchy endosperm (semolina) by the outer layers
of the kernel (aleurone layer and bran). During milling, the
semolina is purified, but a varying proportion of bran particles is
retained in the end product. A high bran content leads to
unsatisfactory technological properties of semolina
(Houliaropoulos et al 1981). Assessment of purity is usually
measured based on mineral content, by the ash test, because outer
kernel layers have higher ash contents than the starchy endosperm.
However, there are problems in evaluating semolina purity by the
ash test (Godon 1977, Abecassis and Feillet 1985): different wheats
have different mineral contents and ash increments when
comparing bran to “pure endosperm.” A technique providing
rapid and reliable results for bran itself, mostly made of cell walls,
would be preferable. Although many chemical methods have been
developed to measure the fiber content of biological material (Van
Soest 1963, Van Soest and Wine 1967, AOAC 1975), they are
time-consuming and only apply to highly fibrous material.

Some physical methods have also been investigated. The major
food constituents, including cell-wall components, absorb in the
near-infrared region (1,100—2,500 nm), where these constituents
present overtones and combination bands. Near-infrared
reflectance is widely used to rapidly measure the composition of
foods and food products (Norris 1978), notably cereal products
(Osborne et al 1982). This technique has also been used to
determine fiber in cereal foods (Baker 1983, Horvath et al 1984).
The fundamental vibration-rotation bands and the skeletal
vibrations fall in the mid-infrared range (400—4,600 cm™'). This
spectral region was recently used to study cell-wall components
(Morikawa and Senda 1978, Hopkinson et al 1985). Use of the
mid-infrared to characterize complex products such as foods and
food products has, however, long been precluded by technical
problems. The advent of Fourier transform spectrometers, with
their many advantages over traditional dispersive instruments, has
improved the quality of infrared data while making data collection
faster and easier (Griffiths and De Haseth 1986). Also, new devices
and easier techniques have been developed to study opaque
powders (Fuller and Griffiths 1978). Mid-infrared spectra contain
a wealth of information about material constituents. Complex
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spectra make interpretation difficult, but this problem may be
overcome by using multidimensional statistical analyses (Devaux
et al 1986, Cowe and Mc Nicol 1985).

This preliminary study investigates the potentialities of mid-
infrared diffuse reflectance spectroscopy for characterizing the
quality of milled durum wheat products (including semolinas,
flours, and brans) using new technical developments combined
with multidimensional statistical analyses. This combination has
not yet, to our knowledge, been used for cereal products, and could
be interesting. Identification of characteristic absorption bands of
cell-wall components was attempted.

MATERIALS AND METHODS

Samples

Nineteen milled products were produced from the durum wheat
Agathe in an experimental durum mill of the Laboratoire de
Technologie des Céréales, INRA (Montpellier, France). The
samples included seven semolinas, eight flours, and four brans
collected at different stages of milling. They were coded as follows:
semolinas, SEI to SE6 and SET (mixture of all the semolinas);
flours, FB1 to FB4 and FD1 to FD4; brans, BRI to BR4; and
wheat, WHE.

Variation of purity (bran content) of milled products was
evident: bran particles were visible in some flours and semolinas,
notably in SE6. Purity was estimated by an ash test. Actually,
although ash content cannot be used for milled products coming
from different wheat cultivars, it does express their purity when
applied to the products of a single wheat, as was the case in our
experiment. Semolinas had the lowest ash contents (0.63-0.96%
dry matter), followed by flours (1.76—2.64% dry matter). Brans had
the highest ash contents (3.36-5.81% dry matter). Semolinas SE3
and SE1 were the purest, SE2 and SE4 were intermediary, and SES
and SE6 were the most contaminated by outer layer particles.

Except for the flours, which were finely powdered, all milled
products and wheat were reground using a Cyclotec grinder with a
0.5-mm mesh.

Purified wheat starch (Rofec 61-927), microcrystalline cellulose
(Avicell PH 101 Mercks), wheat gluten extracted according to
Godon et al (1983), and cell-wall fractions were also available. The
cell walls were isolated from the milled products by the procedure
of Brillouet and Carre (1983).

Mid-Infrared Diffuse Reflectance Spectra

Mid-infrared spectra were collected on a Nicolet 10-M X Fourier
transform spectrometer. Diffuse reflectance spectra were obtained
with a Barnes diffuse reflection cell (Messerschmidt 1985).

Finely ground homogeneous material was placed in the sample
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cup (13 mm diameter by 2 mm deep). Excess material was removed
by passing a straight edge across the surface. The sample cup was
then placed in the diffuse reflection cell, continually purged with
dry air. The sample was purged 5 min before recording the spectra.
Finely powdered dry potassium chloride was used to obtain a
background against which spectra of all other samples were
compared.

The data were recorded from 1,850 to 1,000 cm™' in 4-cm
increments as log (1/R), where R is the ratio of the reflected
intensity for the background to that of the sample. Thrée hundred
scans were averaged for each spectrum. The intensity of the spectra
was low: the highest peaks had log (1/R) values lower than 0.1
(0.035-0.058 on baseline-corrected spectra).

Baseline adjustment was carried out manually by application of
software supplied with the spectrophotometer.

Mathematical Treatments

Multidimensional statistical analyses were performed on an
IBM PC microcomputer. Software based on the programs of
Foucart (1982) was developed at the Laboratoire de Technologie
des Aliments des Animaux, INRA (Nantes, France).

Multidimensional statistical analyses, such as principal
component analysis (PCA) and correspondence factorial analysis,
describe variation in multidimensional data by a few synthetic
variables. These synthetic variables are linear combinations of all
the original variables, and have the advantage of having no
correlation with each other. Simpler descriptions of data sets are
thus obtained with minimal loss of information. These treatments
were used for morphological analysis (Le Nouvel 1981) of spectra
and to graphically represent similarity of spectra.

PCA

A spectrum including # spectral data can be seen as a pointinan
n-dimensional space. Similarly, a set of spectra forms a
multidimensional volume in that space. Each dimension
corresponds to an axis or wave number at which the sample is
measured. The description of the multidimensional volume using
the original data may not, however, be the simplest mathematical
way to characterize a collection of spectra (Bertrand et al 1984).
This is notably true with mid-infrared spectra: in the mid-infrared
range, data may be highly correlated. The information has a large
redundancy, which can be eliminated by creating a more suitable
system of axes.

The first improvement is to put the origin of the axes at the
center of the multidimensional volume by centering the data, i.e.,
subtracting the mean spectrum from each observation. A rotation
of axes is then performed to put the first axis (first principal
component) in the largest dimension of the volume. The second
component is chosen to be orthogonal to the first one, taking width
into account. Subsequent components are calculated in the same
way, each at right angles to all the preceding components, and
adjusted to the largest remaining dimension. In practice,
components are determined to give the largest sum of the square
(variance) of the projection of the observations.

Mathematically, the directions of the new axes are defined by the
eigenvectors of X’ X, where X is the centered data table (rows =
observations, columns = variables), and X’ is the transposed
matrix. Variances along each axis are the eigenvalues of X'X.
Percentages of total variance, which are the ratio (in percent) of the
corresponding eigenvalues to the total variance, are also
commonly used.

PCA can also be performed with spectra as variables and wave
numbers as observations. This mathematical treatment applied to
digitized continuous curves is called morphological analysis. The
principal components obtained are linear combinations of spectra;
the spectra can also be described, from the opposite point of view,
as linear combinations of the principal components. Morphological
analysis thus splits spectra into linear combinations of independent
“spectral patterns.” The spectral pattern corresponding to a
principal component can be drawn by associating each wave
number to its coordinate on that principal component. Spectral
patterns are abstract features that represent the spectral variation
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in the set of spectra. It is interesting to study the shapes of spectral
patterns, which often resemble spectra of known constituents, or
known absorption bands (Robert and Bertrand 1985a, Cowe et al
1985).

A standard PCA (with spectra as observations) was also
performed. This mathematical treatment is used to draw similarity
maps and analyze resemblances and differences among spectra.

Because our program could not handle more than 80 variables, a
selection was made among available wave numbers, based on
results of the morphological analysis: parts of the spectral range
corresponding to the highest coordinates of spectral patterns were
retained. Data in each column of the data table were divided by the
standard deviation of that column to give the same weight to each
wave number in the creation of principal components.
Contributions of wave numbers to creation of principal
components were used to help to interpret the spectral significance
of principal components. Contributions can be evaluated from the
formula:

— ; 2
C;= (x) X 1,900 s (1
Pi
v
where Ci = the contribution of the wave number v to the creation
of the principal component i, x = the coordinate of the wave

number v on the principal component i, and Pi = the variance
along the principal component i.

Correspondence Factorial Analysis (CFA)

CFA (Benzecri and Benzecri 1980) is a statistical technique that
gives the same role to rows and columns of a data table, allowing
representation of observations and variables on the same graph.

The principle of CFA is very similar to that of PCA. The
reciprocity of the analysis on the rows and the columns and the
mixed representations require data transformation before a
standard PCA. Good descriptions of CFA and justification of the
transformation are given in Lebart et al (1977) and Lefebvre
(1983). The synthetic variables calculated by CFA are called
principal factors.

One advantage of CFA is that it can be performed using either
spectra or wave numbers as observations. The most convenient line
of action, which, for practical reasons, is the one where variables
are less numerous, can be chosen. Wave numbers were thus
considered to be observations, and spectra were treated as
variables.

RESULTS

Direct Observation of Spectra

Spectra of starch, gluten, cellulose, and purified cell walls are
given in Figure 1. Some spectral distortion was observed, because
of the physical state of the samples (undiluted powders) and the
specular component of the reflected light. Particle size and sample
preparation, together with the diffuse reflectance technique,
caused this disturbance. Gluten showed an absorption band at
1,694 cm™', an unexpectedly high frequency for an amide 1 band,;
this shift was ascribed to the chemical and physical nature of gluten
proteins and to measurement conditions. Absorption bands of
cellulose were found in the spectrum of the cell walls (fibrous
material made of cellulose, hemicelluloses, and lignin).

Spectra of wheat (WHE), of bran (BR1), and of semolina (SE3)
(Fig. 2) show some similarities between the spectrum of semolina
and that of starch, and between the spectrum of bran and that of
cell walls. The spectrum of wheat showed characteristic absorption
bands of starch and of cell walls. Comparison with earlier works
(Linand Pomeranz 1965) showed a good overall resemblance with
other wheat spectra (particularly with durum wheat): broad bands
at 1,660 cm™' and 1,400-1,300 cm™', peaks at about 1,450, 1,160,
and 1,060 cm™".

Morphological Analysis
Results of the morphological analysis carried out on the original



)
©
S
g 1734
~
w3
2a
o
S
o~
g g 1134
< a
o
<+
o
]
o
Q + t + o
2000.0 1750.0 1500.0 1250.0 1000.0
8 WAYENUMBERS (CM-1}
@
G
o
o
w
98
Lo
S
g0
“a
(@]
o)
o
a
o

2000.0 1750.0 1500.0 1250.0 1000.0
WAVENUMBERS (CH-11

~ B
n
n
Q
g 7
B
w
28
%Dah
o
B o
a7
“a
(]
[\V]
Q
Q
a
Q ¢ + + Y
' 2000.0 1750.0 (S00.0 1250.0 1000.0
o WAVENUMBERS [CH-1)
2]
a D
Q
w
uv—‘
28
gl
1o}
0’-‘
mv“
m.‘
G:C}.J
!
(4]
(@]
(@]
Q
© >000.0 1750.0 1500.0 1250.0 1000.0

WAVENUMBERS [CHM-11

Fig. 1. Diffuse reflectance spectra of A, cell walls extracted from BR1 by the procedure of Brillouet and Carre (1983); B, wheat gluten; C, microcrystalline
cellulose, and D, wheat starch from 2,000 to 1,000 cm™'. The samples were run as undiluted powders.
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Fig. 2. Diffuse reflectance spectra of wheat(——), semolina (——), and bran

(++) from 1,850 to 1,000 cm™'. The samples were ground in a Cyclotec

grinder (0.5-mm mesh) and run as undiluted powders.

spectral data (log 1/R) are given in Figure 3. The first four
principal components accounted for 99.6% of the total variance.

The spectral pattern associated with principal component 1
(96.3% of total variance) (Fig. 3A) described the general outline of
the spectra. Multidimensional analyses split data in a sum of
independent phenomena. With spectral data, the main
phenomenon (which corresponds to the first principal component)
is a difference in general intensity: in first approximation, spectra
are varying proportions of the average spectrum. The spectral

patterns in Fig. 3B—D corresponded to principal components 2
(1.9% of the total variance), 3 (1% of the total variance), and 4
(0.49% of the total variance). They exhibited positive peaks at 1,730
or 1,714 cm™ and 1,594 cm™' related to cell walls. The spectral
patterns associated with principal components 2 and 3 also
featured negative peaks assigned to starch (1,066, 1,102, 1,122, and
1,166 cm™'). These peaks in opposite directions corresponded to a
comparison between those parts of spectra related to a statistical
opposition in concentrations of starch and of cell walls in milled
products. In addition to the peaks at 1,730 and 1,594 cm’!, the
spectral pattern corresponding to principal component 4 showed
absorption bands that were characteristic of cellulose (1,178 and
1,134 cm™).

PCA

Three portions of the spectral range (1,750-1,654 cm’',
1,602-1,550 cm™', and 1,194-1,050 cm™"), containing a total of 76
data points, were selected for PCA. The main absorption bands of
starch and cell walls extracted by morphological analysis were
within these limits.

The first four principal components accounted for 99.5% of the
total variance. Previous experiments (Robert and Bertrand 1985b)
showed the first principal component (91.2% of the cumulated
variance) to be representative of the general intensity of the spectra
(which variation is the main quantitative phenomenon). Principal
components 2 and 3 (5.7 and 1.8%, respectively, of the total
variance) defined the similarity map in Figure 4. A discrimination
of spectra according to the nature of samples was observed: brans,
flours, and semolinas were clearly separated. Semolina SE6, which
was known to have a high bran content, is near the brans. The
contributions of the wave numbers to the creation of the principal
components, calculated according to formula I, are given in Table
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I; the contributions of wave numbers with a negative coordinate
were differentiated by a minus sign. Principal component 2
contrasted wave numbers 1,166, 1,102, and 1,066 cm™ (starch) to
wave numbers 1,730, 1,714, and 1,594 cm™" (cell walls). Principal
component 3 set absorption bands of cell wall (1,730 and 1,594
cm’') over against absorption bands of gluten (1,694 and 1,554
cm™') and one absorption band of starch (1,166 cm™'). Only
spectral data were used in creating principal components; thus
PCA extracted potentially useful information based solely on
spectra.

CFA

CFA was performed on all spectral data. The first four principal
factors accounted for 96.3% of the total variance. Principal factor 1
(62.3% of the total variance) represented the variations of the
general intensity.

On graphical representations featuring both spectra and wave
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Fig. 3. Morphological analysis: spectral patterns of A, principal component
1 (96.3% of total variance); B, principal component 2 (1.9% of total
variance); C, principal component 3 (1% of total variance); D, principal
component 4 (0.4% of total variance). X axes are wave numbers (from 1,850
to 1,000 cm™'), and Y axes are factorial coordinates for the represented
principal component (arbitrary intensity units).
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Fig. 4. Principal component analyses: similarity map defined by principal
components 2 and 3 (5.7 and 1.8% of total variance, respectively).
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numbers, a striking point was that consecutive wave numbers
followed one another in an ordered manner. For better legibility,
we linked the wave numbers in increasing order. The line thus
obtained is called the “parametric curve.” Le Nouvel (1981) has
shown that, in multidimensional analyses of digitized continuous
curves, replacing the individual data points by such parametric
curves is possible and meaningful. Changes in direction of
parametric curves usually indicate significant wave numbers. An
interpretation of the proximity between a given wave number and
the spectrum of a sample is possible if that sample has
characteristic composition, i.e., is very rich in one chemical
component. These proximities were used to confirm assignments
of the most significant absorption bands.

The graphical representation defined by principal factors 2
(16.7% of the total variance) and 3 (11.5% of the total variance) is
shown in Figure 5. The layout of spectra was similar to that
obtained by PCA (Fig. 4). Clear differentiation of brans,
semolinas, and flours was observed. Semolina SE6, rich in cell wall
components, was located near the brans.

The parametric curve featured changes in direction (in the area
of semolinas) at 1,166, 1,102, and 1,066 cm™' (attributed to starch)
and 1,134 cm™'. A local opposition was observed between wave
numbers of starch and the wave number at 1,134 cm™’,
characteristic of cellulose. Brans are in the same quadrant as
characteristic absorption bands of cell wall components
(1,730-1,714 cm™', 1,594 cm™").

The similarity map given in Figure 6 is defined by principal
factors 2and 4 (5.8% of the cumulated variance). The main features
of the parametric curve were changes in direction at 1,730 and
1,594 cm™', set against wave numbers at 1,166 and 1,066 cm™". This
information can indicate purity of milled products of durum wheat
(line 1). Moreover, results are in agreement with those reported by

TABLE 1
Contributions to the Creation of the Axes
of Principal Component Analysis (X100)

Principal Component

Wave Number 1 2 3

1,730 12.3 22,5 -21.4
1,714 12.1 30.3 -11.8
1,694 13.1 9.3 29.4
1,594 13 14 —15.3
1,554 13.5 5.3 19.1
1,178 13.3 -1 20.3
1,166 12.7 —15.8 32.8
1,134 13.7 -10.3 0.3
1,102 13.3 —18.1 0.3
1,090 13.4 -15.9 - 33
1,066 12.8 —22.1 - 44

Fig. 5. Correspondence factorial analyses: similarity map defined by
principal factors 2 and 3 (16.7 and 11.5%, respectively, of total variance).
The continuous line is the parametric curve, drawn by linking the points
corresponding to wave numbers in increasing order. The italicized numbers
are wave numbers where changes in direction occur.
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Houliaropoulos et al (1981) concerning the histological origin of
the various mill streams.

CONCLUSION

Two main conclusions were reached: 1) Diffuse reflectance
infrared Fourier transform spectroscopy has potential to
characterize milled products of durum wheat. Components
characteristic of cell walls were identified by absorption bands at
1,178 and 1,134 cm™ (cellulose) and 1,730 and 1,594 cm™' (non-
cellulosic cell wall material). Significant wave numbers were also
extracted for starch (1,166, 1,102, and 1,066 cm™"). Development of
a test to detect and measure the presence of peripherical layers in
semolina seems to be possible. However it would be necessary to
confirm these results by using various wheat cultivars from
different locations.

2) Multidimensional statistical analyses allow a clear description
of spectral data. Morphological analysis gives access to the
patterns of spectral variation: the portions of spectra that have
high factorial coordinates in morphological analysis match
important absorption bands of components that have varying
concentrations between the samples. Resemblances between
spectra are visualized on the similarity maps of PCA. An
assignment of the wave numbers can be realized using CFA.
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